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In the UK, women between 50e70 years are invited for 3-yearly mammography screening
irrespective of their likelihood of developing breast cancer. The only risk adaption is for
womenwith >30% lifetime risk who are offered annual magnetic resonance imaging (MRI) and
mammography, and annual mammography for some moderate-risk women. Using question-
naires, breast density, and polygenic risk scores, it is possible to stratify the population into the
lowest 20% risk, who will develop <4% of cancers and the top 4%, who will develop 18% of
cancers. Mammography is a good screening test but has low sensitivity of 60% in the 9% of
women with the highest category of breast density (BIRADS D) who have a 2.5- to fourfold
breast cancer risk. There is evidence that adding ultrasound to the screening mammogram can
increase the cancer detection rate and reduce advanced stage interval and next round cancers.
Similarly, alternative tests such as contrast-enhanced mammography (CESM) or abbreviated
MRI (ABB-MRI) are much more effective in detecting cancer in women with dense breasts.
Scintimammography has been shown to be a viable alternative for dense breasts or for follow-
up in those with a personal history of breast cancer and scarring as result of treatment. For
supplemental screening to be worthwhile in these women, new technologies need to reduce
the number of stage II cancers and be cost effective when tested in large scale trials. This article
reviews the evidence for supplemental imaging and examines whether a risk-stratified
approach is feasible.
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Introduction

In the UK women aged 50e70 years are invited for 3-
yearly mammography as early detection has been shown
to be cost effective in prevention of breast cancer deaths.1,2

Since the start of screening in the UK in the late eighties
improvements have beenmadewith the adoption of double
reading, two-view mammography, and the move from
analogue mammograms to digital mammography and a
world-leading quality-assurance system. This differs to
other screening programmes where annual or biennial
screening takes place by either double or single reading,
with the European Society of Breast Imaging recommend-
ing screening women age 50e69 years to be screened every
2 years as well as every 3 years for women age 70e74 and
2e3 years for women age 45e49.3 In the US the American
Cancer Society (ACS) recommends annual screening age
45e54 then biennial screening with only single reading.4

The screening programme includes all women, irre-
spective of their risk of developing breast cancer. For this
age-based or “one-size-fits-all” approach to breast
screening, the estimated benefit includes an estimated 20%
reduction in mortality5; however, the risks of overdiagnosis
(estimated at 11e19%) and potential effects of over-
treatment and on psychological wellbeing, although diffi-
cult to quantify, should not be overlooked.5 A cost-
effectiveness study of 364,500 hypothetical women found
that targeted screening of women with a higher risk of
breast cancer was associated with reduced overdiagnosis
and reduced cost of screening while maintaining reduced
breast cancer deaths.6 Risk-stratified approaches to breast
screening should aim to improve the benefit-to-harm ratio
as well as the cost-effectiveness of screening.
Interval cancers

Interval cancers, defined as “a breast cancer diagnosed in
the interval between scheduled screening episodes in
women who have been screened and issued with a normal
screening result”,7 are a feature of any screening pro-
gramme and have a worse prognosis.8,9 One reason for in-
terval cancers or indeed cancers not being diagnosed until
the next screening round is the presence of dense paren-
chymal tissue, which hides the features indicating a cancer,
the so-called masking effect. Dense breast parenchymal
patterns are known to confer a fivefold risk of interval
cancer compared with the lowest breast density.10

Compared to “average” breast composition, the increase is
twofold. Mammographic sensitivity falls to around 60% in
the 9% of the screening population with the highest breast
density10. Analysis of 365,426 women from the American
Breast Cancer Surveillance Consortium demonstrated that
advanced stage interval cancer rates were highest in
women with the highest category of density and in women
with a 5-year risk of >2.5% and BIRADS C density.11

The screening interval will affect interval cancer rate, but
cancers can also go undetected at screening for a variety of
reasons, such as search error, perception error, decision-
making error, and image-quality error.12e14 The cancer
may be outside the imaging field of view or it may be
mammographically occult, secondary to masking. Catego-
risation of interval cancers is an important part of quality
assurance of the NHS Breast Screening Programme
(NHSBSP). Most are classed as satisfactory true interval
cancer; no actionable abnormality on the prior screen but in
a certain proportion minimal signs or even frankly suspi-
cious imaging signs will be evident on the prior screens
(classified as satisfactory with learning points or false
negative respectively). Interval cancers are often of higher
grade and T stage compared to screen-detected cancers
with poorer survival outcomes, chiefly because of the latter,
and behave in a similar way to breast cancers diagnosed in
women who have not been screened.8,9,13,15 A large Dutch
study found that volumetric breast density was a strong
predictor of interval cancer risk (hazard ratio 8.37 for the
highest quartile of volumetric density compared with the
referent lowest density quartile).10,16

The UK interval cancer rate is reported at approximately
2.9/1,0008 compared to a cancer detection rate of 8/1,000 in
a 3-yearly programme. A study of 306 interval cancers from
five NHSBSP screening sites found the average time to
diagnosis for interval cancers of 644 days, such that the
highest proportions are diagnosed in the second (42%) and
third years (36%) after screening, and an estimated average
tumour volume doubling time of 167 days.9 Measures to
reduce interval cancers and larger cancers found in incident
rounds would be an effective method of improving survival
and there is much interest in the role of artificial intelli-
gence (AI)-based computer-aided detection software in this
context. AI could potentially work independently or syner-
gistically with readers to detect cancers as well as triage
scans for an adapted stratified screen reading workflow.
Risk stratification

Risk prediction models use personal information, such as
family history, age, previous breast biopsy, etc., as well as
single nucleotide polymorphisms (SNPs) to give the likeli-
hood of developing breast cancer.17 Breast density is incor-
porated into these models and gives an additional 7%
accuracy although appropriate choice of automated density
tool in each model is not yet known.18e20 Risk prediction
models require validation; the Tyrer-Cuzack model (devel-
oped in women with a family history of breast cancer)21 is
being refined and tested in a large Manchester normal
population risk cohort. The CR-UKCanRisk programme aims
to develop and validate breast cancer risk prediction tools
that can be used at all levels of healthcare within the NHS.22

CanRisk includes the BOADICEAmodel23,24 that has recently
been extended to include all known breast cancer suscepti-
bility SNPs and breast density. In a recent validation study of
10,000 high-riskwomenparticipating in screening in theUK
BOADICEA has been found to be well calibrated in all deciles
of predicted risk. There is an acknowledgement that all
stakeholders now need to consider the benefits and harms,
costs and acceptability of moving to a risk-stratified
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approach in a transparent manner, for example, including a
single assessment check point at age 40/50, using a com-
bined model (e.g., TyrereCuzack or BOADICEA) incorperat-
ing personal information, SNPs, and breast density. Such
targeted screening could alter the age of screening
commencement, as well as frequency and modality used.
The continuous review of such risk due to changes in risk
over time (e.g., breast density involution as well applying
and uptake of prevention strategies alongside screening) is
required. We must also consider population compliance,
with a current screening attendance of 70%. How this tar-
geted screening would alter adherence is uncertain. The
potential advantage is that fewer people may need to attend
screening in order to achieve the same impact, and that a
better balance of benefits and harms may result from using
different screening strategies for people at different risks.25

At present, AI can undoubtedly help with diagnosis and
image interpretation; however, it also offers the promise of
integrating information on risk from questionnaires
including family history, SNPs, and extraction of information
from digital radiographs and other imaging to better inform
awoman’s risk of developing breast cancer. It is hoped that a
better integration of this complex information can be
translated into an implementable personalised risk score.
Breast density

Mammographic density, or breast density, is the pro-
portion of radiopaque fibroglandular tissue (fibrous con-
nective tissue or stroma and glandular epithelial tissue)
compared to radiolucent adipose tissue within the
breast.26,27 It may be regarded as a global measure of breast
composition and varies according to age, genetic predis-
position, ethnicity, body mass index, hormone exposure,
and lifestyle factors.28,29 As well as affecting mammo-
graphic screening performance through masking, density is
also an independent risk factor for breast cancer, with
women in the higher breast density categories reported to
have a 2.9- to sixfold increase in relative risk for developing
breast cancer when compared to those in the lowest breast
density category.30,31 The distribution and heterogeneity of
density within the breast is also important, as focal density
can result in masking.12,26,32 Additionally, it has been
demonstrated in longitudinal studies that localised density
predicts future tumour location.33

Original radiological reporting classifications of breast
density date back to the 1970s34e36 and included an
element of texture or parenchymal complexity. The most
widely used measure of breast density currently is visual
assessment of mammographic percent dense area by a
reader, assigning a three-37 or more usually, a four-point
scale (BI-RADS 5th edition).38 The move from the 4th to
the 5th edition of the BI-RADS scale hasmoved the emphasis
from estimation of area-based percent density towards a
description of the likelihood of masking. As a consequence,
there is a tendency to score more breasts as heteroge-
neously dense (BI-RADS C). In research settings, marking a
10 cm visual assessment scale (VAS) to give a percent
density or generating a score in conjunction with semi-
automated thresholding techniques (Cumulus)39 is more
commonly used. Such subjective assessments are not very
reproducible, due to inter-reader variability.40e42 Quanti-
tative software algorithms produced by companies such as
Quantra, Volpara, Densitas and DenSeeMammo provide
density scores from raw or processed full-field digital
mammography (FFDM) images and derive values that vary
from each other.40,43 Tools such as Volpara and Quantra
have been shown to be reliable when performing repeated
measures.40,44 The software programmes provide an area/
volume score and a BIRADS category. It may be that the
need for supplemental imaging should be based on a nu-
merical score as this might more closely give the risk of
breast cancer or likelihood of masking. There are many al-
gorithms available for automated density measurement and
continued external benchmarking comparison studies us-
ing a standardised test sets is needed.45

Breast density can be affected by positioning, radio-
graphic factors such as tube voltage and current and the
inclusion of additional/non-standard views.39,44 Algorithms
are being constantly developed, using deep learning to
achieve good reader agreement (k ¼ 0.67e0.85), and tech-
niques such as federated learning to improve general-
isability.46,47 The development of density algorithms
requires labelled data and raw mammographic images.
Although sites in the USA report breast density, most in-
stitutions do not routinely report this and the majority of
hospital sites do not store raw images. Although these tools
can be used as standalone systems, their incorporation into
existing cancer prediction models to improve performance
was shown by a recent systematic review to result in a
statistically significant increase in area under the receiver
operating characteristic (ROC) curve (AUC; 0.03e0.14).48

Alternative measures to quantify breast density with non-
ionising radiation techniques have been proposed using
magnetic resonance imaging (MRI) and ultrasound.26,27

Legislation passed by the US Congress in 2019 directs the
Food and Drug Administration (FDA) to ensure reports are
provided for patients and doctors, detailing breast density
as part of the US breast screening programme.49,50 Women
classified as having dense breasts are recommended to
discuss with their doctor if they should undergo additional
imaging, although no unanimous recommendation has
been put in place.50e52 Breast density varies across pop-
ulations with the greatest proportion of the population re-
ported to be represented in the middle two categories of BI-
RADS density and up to 40% of the population are estimated
to have dense breast (heterogeneously or extremely dense)
from studies carried out on US Breast Cancer Surveillance
Consortium (BCSC) populations.53,54

Introducing automated tools to provide consistent reli-
able density measures would fill a gap where density is
currently not reported without increasing the reading
duties and time.55 It would also allow for the incorporation
of density information into risk-prediction models as well
as possibly facilitating a standardisedmeasure fromwhich a
threshold can be determined to target supplemental im-
aging strategies.56
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Digital breast tomosynthesis

Digital breast tomosynthesis (DBT) has already been
adopted by many countries as research indicates that this
three-dimensional (3D) technique can result in improved
sensitivity as well as reduced recall rates57; however, the
improved performance may be less marked in women with
very high breast density and in those cancers presenting as
microcalcification.58,59 There is also concern that someof the
additional cancers being found are slow-growing lesions,
which may not be life threatening, potentially over-
diagnosis. Several studies have now suggested that there is
reduction in interval cancers when DBT is being used,60 but
others have found no such reduction.61e63 Interval cancer
reduction is one of the keyoutcomemeasures in theUK large
randomised controlled trial comparing two-dimensional
(2D) with 2D plus 3D recruiting 100,000 women.64

Mindful of the increased radiation dose with DBT trials
have been undertaken which demonstrate that the stan-
dard 2D mammogram can be replaced by a synthetic 2D
mammogram created from the 3D dataset. It is likely that
DBT will be a powerful step in the improvement of perfor-
mance of the screening programme, although it is likely not
be useful for those women with the densest category of
breast tissue.
Breast ultrasound

Several studies have shown high diagnostic performance
of automated whole breast ultrasound (ABUS), similar to
screening with hand-held breast ultrasound (HHUS)65 with
an incremental cancer detection rate of 1.9e7.7 cases per
1,000 women compared to mammography alone,15,66e70

increased sensitivity of between 21.6e41%, but with vari-
able specificity. Recall and biopsy rates were higher while
positive predictive value-3 (PPV3) decreased by 4.2e15.8%.
The largest ABUS study (SomoInsight Study) detected 1.9
additional breast cancers per 1,000 women,67 similar to the
results of Japan Strategic Anti-cancer Randomized Trial (J-
START)71 but lower than the results of American College of
Radiology Imaging Network 6666.72 The differences in
additional cancer-detection rates was probably due to
differing inclusion criteria of these studies. In the SomoIn-
sight study, 93.3% of cancers were invasive, with mean size
of 12.9 mm and 92.6% node negativity,67 similar to the re-
sults of HHUS screening.71,72 Overall, ABUS screening was
effective in detecting small, invasive, and predominantly
node-negative breast cancers.

Recall and biopsy rates tend to increase with ABUS, with
an additional value of 2.5 per 1,000 screens and PPV3 of
8.3% for the biopsies overall.73 These values have improved
in time though, due to increased reader experience and
software improvement with the latest ABUS systems,73,74

and fall in incident rounds. ABUS has a learning curve, so
adequate training in order to perform state-of-the art ex-
aminations, as well as awareness of technical pitfalls and
artefacts, will improve correct interpretation and reduce
false-positive studies.
ABUS interpretation time tends to vary significantly in
published studies (2.9e9 min), due to differences in reader
experience as well as complexity of cases.67,68,75,76 To
reduce reading time, a computer-aided detection (CAD)
software for 3D ABUS (QVCAD, QView Medical) has been
developed recently and granted FDA approval.77 Recent
reader studies have shown that the use of concurrent-read
CAD systems for interpretation of screening 3D ABUS may
significantly decrease interpretation time up to 35%, as well
as reduce unnecessary recalls, resulting in improved diag-
nostic accuracy.78e80 Computer-aided detection systems
might be a valuable tool to improve workflow in large-
volume screening centres.81

In terms of diagnostic performance, several studies have
evaluated the interobserver reliability in BI-RADS assess-
ment so far, but with heterogeneous results and a consid-
erable variation in kappa values according to a recent
systematic review.82 In a recent retrospective study of 1,886
women, a very high (99.8%; kappa ¼ 0.994, p<0.0001)
interobserver agreement in BI-RADS classification was
found between 3D ABUS and HHUS.75

A unique feature of ABUS is the use of coronal refor-
matted images, contributing to improved detection rates by
enabling lesion identification in three orthogonal
planes.83,84 Vourtsis and Katchulis found that ABUS out-
performed HHUS in the detection of architectural distortion
in the coronal plane and could supplement mammography
in the detection of non-calcified carcinomas in womenwith
dense breasts.75 Furthermore, ABUS demonstrated signifi-
cant higher accuracy for volumetric measurements,
compared to HHUS.

Future perspectives include ongoing research in the field
of deep learning such as radiomics-derived 3D ABUS sig-
natures, as well as combinations of 3D ABUS and tomo-
synthesis in one device in order to improve workflow in
breast imaging.85,86

The US task force concluded that mammography with
supplemental US finds additional breast cancers in dense
breasts but increases false-positive results.87 All supple-
mental US studies in dense breasts found additional cancers
but with variable and sometimes high recall rates.67,71,88

Berg concluded that supplemental US should be offered to
all women with dense breasts.89 Recent EUSOBI guidelines
suggest the usage of HHUS or 3D ABUS as a supplemental
screening modality following a negative mammogram in
women of average or intermediate risk with dense
breasts.90 Another possible indication for screening ABUS is
as alternative to MRI in high-risk women.91
Contrast-enhanced mammography

Contrast-enhanced mammography (CESM) combines
iodinated contrast medium with standard mammography
to improve lesion conspicuity, particularly in women with
dense background parenchymal patterns. Abnormal blood
flow related to neovascularity associated with a carcinoma
is imaged in a similar fashion to contrast-enhanced breast
MRI. Two minutes after the injection of the contrast agent
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standard craniocaudal and mediolateral oblique views are
acquired of both breasts. The CESM is a dual-energy tech-
nique generating two sets of images in the same breast
compression, a low energy image, which is equivalent to a
standard 2D digital mammogram and a recombined image,
which demonstrates the contrast medium uptake.92

Consequently, when a CESM study is performed, standard
2D digital mammography can be safely omitted. The radi-
ation dose of CESM is between 1.2 and 1.8 times that of a
standard 2D digital mammogram, but is well within QA
guidelines for mammography.93,94

Retrospective reading studies comparing CESM with
standard 2D digital mammography have shown a signifi-
cant improvement in the sensitivity and specificity of CESM
for detecting breast cancer (Table 1). The patient pop-
ulations in all these studies are either symptomatic patients
or patients recalled to assessment after an abnormal
screening mammogram. CESM compares favourably with
MRI for the local staging of breast cancer (Table 2). Studies
have shown equal sensitivity between CESM and MRI for
detecting the index cancer, but with the positive predictive
value of additional biopsies significantly higher with CESM
compared to MRI due to a reduction in false-positive in-
terpretations of additional lesions away from the index
tumour site.95e97 Sumkin et al. found that MRI depicted
twice as many additional suspicious lesions compared to
CESM, without diagnosing more additional malignancies.
The PPV of additional biopsies for MRI was 28% (13 malig-
nancies diagnosed from 46 additional biospies) compared
to CESMwere the PPV was 52% (14 of 27 additional biopsies
being malignant).95

The use of CESM as a screening tool for higher risk
women is a logical step, given the equivalent sensitivity to
MRI for detecting malignancy. Several studies have
compared the performance of CESM to standard 2D digital
mammography in higher risk screening populations. Sorin
et al., assessed performance in a population of 611 women
of intermediate risk, where 48% had a personal or family
history of breast cancer and 93% had a breast density clas-
sified as BIRADS C or D. CESM had a sensitivity of 90.5% for
detecting malignancy, which was significantly higher than
standard digital mammography with a sensitivity of 52.4%
(an incremental cancer detection rate increase of 13.1 per
1,000 women).98 In a series of 904 women with an
Table 1
Comparison between standard two-dimensional digital mammography and
contrast-enhanced mammography (CESM) for breast cancer detection.

Ref. n Mammography CESM

Sensitivity
%

Specificity
%

Sensitivity
%

Specificity
%

Dromain (2011)93 120 80 50 93 56
Jochelson (2013)86 52 81 - 96 -
Fallenberg (2014)82 107 77.9 - 94.7 -
Cheung (2014)94 89 71.5 51.8 92.7 67.9
Lobbes (2014)95 113 96.9 42 100 87.7
Lalji (2016)96 199 93 35.9 96.9 69.7
increased breast cancer risk, Sung et al. found the entire
CESM study had a significantly higher sensitivity of 87.5%
compared to 50% for the low energy image alone (equiva-
lent to a standard 2D mammography), with cancer detec-
tion rates of 15.5 and 8.8 per 1,000 women screened
respectively.99 In this study, 77.4% of the screening cohort
had a dense parenchymal background pattern (BIRADS C or
D), 40.2% had a personal history of breast cancer and 48.6%
had a family history of breast cancer with 9.1% of the pop-
ulation being BRCA mutation carriers.99 Jochelson et al.
compared the performance of CESM andMRI in 307 women
at an increased risk of breast cancer; 56.4% had a family
history of breast cancer including BRCA gene carriers and
33.6% had a personal history of breast cancer. Of the cohort,
93.8% of the women had a negative CESM exam compared
to 92.8% who had a negative MRI study. There were 13 le-
sions that underwent a biopsy following CESM with two
cancers diagnosed (PPV of biopsy 15.4%) and 21 lesions
underwent biopsy following MRI yielding a diagnosis of
three breast cancers (PPV of biopsy of 14.3%). Specificity
rates of CESM and MRI were 94.7% and 94.1%, respec-
tively.100 All three studies demonstrate that CESM is a
promising technique for screening women at increased risk
of breast cancer.

There are other issues to take into account when
considering CESM as a screening tool. Physiological/benign
background parenchymal enhancement can be seen with
CESM in a similar manner to that observed in breast MRI. As
with MRI, it is significantly associated with menopausal
status, radiation therapy, hormonal treatment, and breast
density.101 No clear pattern in variation of parenchymal
background enhancement across the menstrual cycle has
been demonstrated for CESM, so it is unclear whether
menstrual cycle timing would need to be taken into
considerationwhen scheduling CESM studies in a screening
setting.101

CESM has some advantages over MRI as a screening tool,
being potentially cheaper and better tolerated by
women.102 There are the disadvantages too, around radia-
tion dose and the use of an iodinated contrast agent. The use
of any contrast agent is not entirely without risk. Concerns
have been raised about the long-term use of gadolinium-
based contrast agents in MRI. The iodinated contrast agent
used in CESM carries a very small risk of allergic reaction,
typically around 1%, with the vast majority of these mild
and self-limiting. In one study of 839 women, five allergic
reactions were reported (0.6%) with one women requiring
corticosteroid administration to treat urticaria and short-
ness of breath.103 Sung et al. reported contrast agent reac-
tion in 15 of 904 women (1.7%), with two women requiring
the administration of an anti-histamine.99

CESM is a potentially useful screening tool for women at
increased breast cancer risk. Clinical trials are currently
underway to establish its role in a risk-adapted, personal-
ised approach to breast cancer screening.56 It has clear
benefits for women not currently well-served by conven-
tional mammography, providing the increased sensitivity
achievable from a vascular-based breast cancer screening
test.



Table 2
Comparison between breast magnetic resonance imaging MRI and contrast-enhanced mammography (CESM) for the local staging of breast cancer.

Ref. n CESM MRI

Sensitivity
%

Specificity
%

ROC (AUC) Sensitivity
%

Specificity
%

ROC (AUC)

Jochelson (2013)86 52 96 95 - 96 94 - NS
Chou (2015)97 185 - - 0.878 - - 0.897 NS
Fallenberg (2017)98 604 - - 0.84 - - 0.85 NS
Lee-Felker (2017)85 120 94 99 NS
Kim (2018)99 84 93 - - 95 - - NS
Sumkin (2019)84 110 91 93 NS

ROC, receiver operating characteristic; AUC, area under the ROC curve; NS, non-significant.
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ABB-MRI

Currently, MRI screening is only recommended for high-
risk women (especially those with a history of prior mantle
radiotherapy and strong familial risk of breast cancer,
especially BRCA1/2 carriers) who are invited for annual
examination. Although there is considerable evidence for
the high sensitivity for MRI, it is only cost effective in high-
risk women.104,105 The use of ABB-MRI protocols for the
detection of breast cancer has gained increasing attention
as these acquire a shortened version of the standard full
diagnostic protocol (FDP-MRI) in a third of the time with
reduced reading times, reducing the cost of the examination
considerably.106

An abbreviated protocol generally includes an unen-
hanced T1-weighted (T1W) sequence with at least one
contrast-enhanced T1W examination from which subtrac-
tion and 3D maximum-intensity projection (MIP) images
can be generated. Kuhl et al. reported the first prospective
reader study evaluating ABB-MRI as a screening technique
in a cohort of asymptomatic women with mild to moderate
risk of breast cancer, finding a sensitivity of 91% and
negative predictive value of 99% using only MIP images
with an average reading time of just 3 seconds.106 These
both increased to 100% with the addition of the T1W
contrast-enhanced images in a reading time of w30 sec-
onds. A large number of studies have since investigated
ABB-MRI, although the protocols used vary between in-
stitutions and the introduction of standardisation would be
very valuable.

A meta-analysis of five studies (including 2,588 patients
with 62 cancers) comparing ABB-MRI and FDP-MRI in a
screening setting found a comparable diagnostic perfor-
mance (AUCs of 0.94 and 0.97, respectively) and no statis-
tically significant differences in sensitivity and specificity
between the two protocols (p¼0.18 and 0.27).107 Pooling
eight studies using enriched cohorts (1,432 patients with
540 cancers), ABB-MRI and FDP-MRI were shown to be
diagnostically equivalent (AUCs 0.94 and 0.95, respectively).
Although this appears promising, combined cohorts
enriched with problem-solving, preoperative staging, and
selected cases do not reflect the clinical setting of interest
and outcome measures should be interpreted as such. To
date, there have been few prospective studies evaluating
ABB-MRI in a purely screening setting.
For women at high risk of breast cancer, ABB-MRI has
been shown to be as effective as full FDP-MRI with a high
sensitivity (82e91.4%)108,109 and significantly reduced
interpretation times.110 As abbreviated MRI aims to reduce
the cost, examination times, and interpretation times of
MRI, this may enable the more widespread use of MRI as a
screening tool for low-to intermediate-risk women for
whom MRI screening is currently not cost effective. Given
the lack of consensus on current risk-based screening rec-
ommendations, many women incorrectly classified as low-
risk may benefit fromMRI screening. A prospective study of
mild-to moderate risk women found a cancer detection rate
using abbreviated MRI similar to that of a routine screening
MRI protocol in high-risk women (18.2 versus 17e22.1 per
1,000).106,111,112

The sensitivity of MRI is not limited by breast density,
making it an ideal technique for the screening of women
with dense breasts. The multicentre EA1141 trial (Compar-
ison of ABB-MRI and DBT in Breast Cancer Screening in
Women with Dense Breasts) evaluated an abbreviated
protocol in a screening cohort of 1,444 women with dense
breasts, finding a higher rate of invasive cancer detection
using ABB-MRI compared to DBT.113 A study by Weinstein
et al. found a cancer detection rate of 24.7 per 1,000 using
ABB-MRI in a cohort of 475 womenwith dense breasts with
negative/benign DBT findings.114 In the Dutch DENSE trial
women at population risk with extremely dense breasts
were randomised to DM alone or supplemental screening
MRI.115 The interval cancer rate, themain outcomemeasure,
was only 0.8/1,000 in those women who actually under-
went MRI screening, for a cancer detection rate of 16.5/
1,000, whereas in the DM only group, the interval cancer
rate was 2.5/1,000 screened.

The benefits and risks of screening MRI for average risk
women must be considered with respect to the repeated
administration of gadolinium-based contrast agents
(GBCAs) over long-term screening periods. GBCAs can cause
allergic or physiological reactions (such as nausea or
headaches) in a small percentage of patients116 and are
contraindicated in patients with impaired renal function.
Recently, studies have also reported the presence of gado-
linium deposits in the brain and bodywith cumulative dose,
although no clinical adverse side effects have yet been re-
ported.117 This is of interest for high-risk healthy women
who undergo routine annual MRI screening with contrast
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medium who have up to 40 doses of GBCAs during their
lifetime. As such, there is growing interest in unenhanced
screening MRI techniques. Diffusion-weighted imaging
(DWI), an unenhanced MRI technique, has demonstrated
sensitivity and specificity comparable to contrast-enhanced
MRI118 and shows promise as a supplemental imaging
method to exclude malignancy in women with suspicious
mammograms.119
Radionuclide imaging

Scintimammography (SM) has been advocated to com-
plement DM in women with dense breast tissue or in those
womenwith structural changes or scars related to previous
surgery or radiotherapy. There has been longstanding
worldwide debate as to the utility and accuracy of this
method120 and there are several ongoing studies evaluating
its positioning in the diagnostic work-up. Most of the
debate centres on its role when mammography is indeter-
minate, compared to the use of MRI and ultrasound121,122;
however, SM is far from achieving widespread recognition.

The method is very simple and relies on planar or
tomographic acquisitions of the breast, generally in the
prone position, 5e10 minutes after administration of a
tumour-seeking radiotracer such as 99mTc-sesta-methox-
yisobutylisontrile (99mTc-Sestamibi). Breast malignancies
have been shown to have high uptake of 99mTc-Sestamibi
compared to normal breast background as well as regional
lymph nodes.123,124 The technique has been evaluated since
the early 1990s and has beenmorewidely accepted in North
America where it received FDA approval in 1997.

Advances in dedicated acquisition hardware have refo-
cused attention on the potential of this technique. Compact
dual-head gamma cameras specifically designed and opti-
mised for breast imaging have been developed that allow
detection of smaller lesions. In a large case series from the
Mayo clinic, the use of SMwith this dedicated hardware has
been shown to significantly increase detection of node-
negative breast cancer in patients with mammo-
graphically dense breasts.125 Commercially available dedi-
cated systems resembling traditional mammography units
have been developed allowing intrinsic resolution of 1.6
mm, markedly improving sensitivity for the detection of
small breast tumours and those located in the upper inner
quadrant. The reduced effective dose comparable to that of
annual mammographic screening allows widespread
applicability.126,127 Hruska et al. analysed the additional
diagnostic work-up and costs of a single supplemental
molecular breast imaging test in womenwith dense breasts
and concluded that despite an increase in the additional
cost and benign biopsy rate, the higher cancer detection
rate resulted in a lower overall cost per cancer detected than
with screening mammography alone.126
Conclusion

Advances in breast cancer imaging have already had an
impact on early detection. The more reliable robust
automated methods of measurement of breast density
mean that these can be used in a reproducible manner to
determine the need for supplemental imaging particularly
if these are combined with risk. There is strong evidence
that MRI is an effective screening tool inwomenwith dense
breasts and that ABB-MRI can be also be considered
although both have higher false-positive rates compared to
mammography. Whole-breast ultrasound is now being
used as a supplemental tool, although recall rates may be as
high as with MRI. There is some published data on CESM as
a screening tool but more evidence is required. The op-
portunity to reduce false-negative examinations offered by
these supplemental techniques is important and outweighs
the slightly higher false-positive results. As in the general
population where there are acknowledged costs, harms,
and benefits of screening, the same will be true of a per-
sonalised approach. It is hoped that through risk-adaptive
screening, costs would be made more effective, harms
would be minimised, and benefits to women would be
maximised. Policymakers and healthcare providers now
need to consider adjusting their breast screening pro-
grammes to a more appropriate offering for their clients
rather than justify a “one-size-fits-all” approach.
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